Acid mine drainage analysis and mitigation of a rehabilitated waste rock dump of Kaiata mudstone from Mt Fred Quarry, Stockton Mine

C. McLachlan, P. Lindsay, P. Weber and B. Walker

17-18 September 2018
2018 AusIMM MZ Branch Conference, Tauranga, NZ
Disclaimer

This presentation has been prepared by and issued by Bathurst Resources Limited ("Bathurst") to assist in informing interested parties about the Company and its progress. It should not be considered as an offer or invitation to subscribe for or purchase any securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this presentation.

You should not act or refrain from acting in reliance on this presentation material. This overview of Bathurst does not purport to be all inclusive or to contain all information which its recipients may require in order to make an informed assessment of the Company’s prospects. You should conduct your own investigation and perform your own analysis in order to satisfy yourself as to the accuracy and completeness of the information, statements and opinions contained in this presentation and making any investment decision.

Neither the Company nor its advisers have verified the accuracy or completeness of the information, statements and opinions contained in this presentation. Accordingly, to the maximum extent permitted by law, the Company and the advisers make no representation and give no assurance, guarantee or warranty, express or implied, as to, and take no responsibility and assume no liability for, the authenticity, validity, accuracy, suitability or completeness of, or any errors in or omission, from any information, statement or opinion contained in this presentation.

Reports and announcements can be accessed via the Bathurst Resources website – www.bathurst.co.nz

Forward-Looking Statements:
This presentation includes certain “Forward-Looking Statements”. All statements, other than statements of historical fact, included herein, including without limitation, statements regarding forecast cash flows and potential mineralisation, resources and reserves, exploration results, future expansion plans and development objectives of Bathurst Resources Limited are forward-looking statements that involve various risks and uncertainties. There can be no assurance that such statements will prove to be accurate and actual results and future events could differ materially from those anticipated in such statements.
Location of Stockton and Mt Fred Quarry

Map by Hamish Pescini
Evolution of a WRD
Evolution of a WRD
Mt Fred Quarry

- Granite quarry
- ~4 Mt of high potentially acid forming (PAF) material backfilled
- ~3.5 Mt Kaiata Mudstone
- 22,000 tonnes of cement kiln dust (CKD)
- 94,000 tonnes of granite
- Backfilled between 2013 and 2015

<table>
<thead>
<tr>
<th>Waste Material</th>
<th>Kaiata</th>
<th>Rehandle</th>
<th>Pond Slop Waste</th>
<th>Road Slop Waste</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonnes</td>
<td>3,675,000</td>
<td>148,000</td>
<td>77,000</td>
<td>41,000</td>
<td>3,930,000</td>
</tr>
<tr>
<td>Environmental Material</td>
<td>Granite+CKD</td>
<td>Granite</td>
<td>Biosolids+Soil</td>
<td>Biosolids</td>
<td>CKD</td>
</tr>
<tr>
<td>Tonnes</td>
<td>75,900</td>
<td>30,200</td>
<td>18,100</td>
<td>3,200</td>
<td>11,700</td>
</tr>
</tbody>
</table>
Ideal location

• ‘Bathtub’ in low permeability basement rock

• Single
 ➢ Large seep
 ➢ Rock source
 ➢ Backfilling stage

• All material recorded

• Monitored started in 2012

• Parameters monitored;
 ➢ pH
 ➢ Acidity
 ➢ Sulphate
 ➢ Aluminium
 ➢ Electrical conductivity
MFQ construction

- Backfilled in end tipped lifts
- Lifts compacted by machinery driving on it
- 11,700 tonnes CKD dosed on lifts and tiphead
- Final rehabilitation to standard Stockton specifications
 - Reshaped to 18-20° compacted batters
 - 10m benches graded to 1.5% to manage water
 - Diversion drains
 - Compacted 400mm granite : CKD engineered cap
 - 300mm soil : biosolids cover
 - Hydroleeded
 - Planted with native seedlings
- Final rehabilitated footprint – 6.07 ha
Kaiata Mudstone

- Marine mudstone
- Highly friable creating a fine grained deposit
- High compaction – 10^{-7} to 10^{-9} m/s
- High PAF
- Sulfide S – 1.64 wt%
- Very little to no acid neutralising capacity (ANC)
- Paste pH ~4 and low ANC means no lag to acid production

<table>
<thead>
<tr>
<th></th>
<th>Total wt% S</th>
<th>Sulfide wt% S</th>
<th>MPA</th>
<th>Paste pH</th>
<th>ANC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range</td>
<td>1.44 – 2.69</td>
<td>1.22 – 2.27</td>
<td>44.1 – 82.3</td>
<td>3.8 – 4.2</td>
<td><2 – 4.08</td>
</tr>
<tr>
<td>Average</td>
<td>1.92</td>
<td>1.64</td>
<td>58.7</td>
<td>4.0</td>
<td>-</td>
</tr>
</tbody>
</table>

Weber et al, 2006
Kaiata Mudstone

2 yrs old

2 weeks old
Acidity control

• Saturation by placing maximum PAF material below water table

• Minimisation of oxygen and water ingress
 ➢ Compaction of lifts and reshaped batters
 ➢ Engineered granite cap
 ➢ Soil : biosolid mix cover

• Neutralisation
 ➢ CKD dosing
 ➢ CKD in engineered cap

• Rehabilitation and erosion control to maintain competency of the cap
 ➢ Hydroseeding
 ➢ Seedling planting
CKD

- Cement kiln dust - waste product from the drying process at the local Holcim cement works, which has closed down
- Alkalinity – 650kg CaCO₃ equiv/tonne CKD
- CKD used for both dosing and in the engineered granite cap
- 7,580 tonnes CaCO₃ equiv – dosing
- 6,340 tonnes CaCO₃ equiv – engineered cap
CKD in the engineered cap

- 400 mm 4 : 1 Granite : CKD compacted cap
- Minimisation of oxygen and water ingress
- Neutralisation

- Use of CKD in the cap serves multiple purposes
 - Binding/cementation
 - Fine grained
 - Permeability of $10^{-6} – 10^{-7}$ m/s
 - Neutralisation of any water which does permeate through cap
Acid production from MFQ

\[
\text{FeS}_2 \text{ (s)} + \frac{7}{2}\text{H}_2\text{O} + \frac{15}{4}\text{O}_2 \rightarrow \text{Fe(OH)}_3 \text{ (s)} + 2\text{SO}_4^{2-} + 4\text{H}^+
\]

Pyrite

\[
2\text{CaCO}_3 + 4\text{H}^+ \rightarrow 2\text{Ca}^{2+} + 2\text{CO}_2 + 2\text{H}_2\text{O}
\]

Acid

- 2 mole \text{CaCO}_3 required to neutralise 1 mole of pyrite
- 65,000 tonnes of pyrite
- 14,000 tonnes of \text{CaCO}_3 equiv from CKD
- Equivalent to ~1.8kg \text{CaCO}_3 equiv/tonne waste rock
- Capacity to neutralise ~7% of total acidity
Water quality – 6 monthly load

- Major PAF dumping phase started
- CKD added
- Capping started

Graph showing pH, Al (t/y) and Acidity, SO4 (t/y) over time from 02/2013 to 02/2018.
Water quality – acid load

- Pre-capping – 330 tonnes acid / year
- Post-capping – 115 tonnes acid / year
- Pre-capping – 0.085 kg acid /t waste rock/year
- Post-capping – 0.025 kg acid /t waste rock/year
- ~65% reduction in acidity through the use of CKD and capping of the MFQ
Water quality – April 2013
Water quality – June 2014
Cost benefit analysis

- 215 tonne/yr acid load reduction
- Current active treatment cost - $300/tonne
- Site acid decay rate - 0.62% per annum
- NPV of treatment for 215 t/yr acid load for 100 years - $1.86 M
- Cost to transporting and applying the CKD and granite - $0.85 M
- Value of passive treatment vs active treatment at MFQ - $1 M
Conclusions

• Importance of neutralising agents during dump construction

• CKD dosing was very effective in controlling AMD when used directly on lifts and tipheads

• Granite : CKD capping resulted in steady improvements in water quality

• AMD management of high PAF Kaiata led to a 215 tonnes acid/year decrease

• Passive treatment is estimated to have saved $1M in NPV costs
Acknowledgements

Many thanks to Paul Weber and Will Olds from O’Kanes Consulting for assistance.

References

