Hydrothermal alteration footprints for epithermal deposits, Hauraki Goldfield, New Zealand

Mark P. Simpson
Hauraki Goldfield

Low / intermediate sulfidation epithermal

~12.3 Moz Au ~54.9 Moz Ag

- Andesite (from which 90 % of Au recovered)
- Rhyolite
- Meta-sediments

Au-Ag mostly occurs in quartz veins

- Length: 200 to 1,600 m (rarely 4.5 km)
- Vertical: ≥700 m (170 to 330 m mined)
- Width: 0.3 to 5 m (locally 25 m)

Veins surrounded by extensive zoned alteration

(Christie et al., 2001)
Alteration extent

Field mapping and geophysics, but limitations

Alteration footprints
>6 to <50 km² (120 km²)

~12 km² Waihi vein system

~42 km² Maratoto, Golden Cross, Komata, Waitekauri

Larger alteration halos enclose several vein systems

(OceanaGold)
Alteration intensity

Alteration of volcanic rocks ranges from weak to strong (>70 to 100 %)

For strongly altered igneous rocks the original textures often preserved, but for some can be completely destroyed

Typically volcanic rocks hosting veins are strongly altered over 100’s to 1,000’s m

Included within strongly altered rock can be lenses of less altered rock / ‘hard bars’
The rocks are replaced by a variety of alteration minerals. The more common include:

- Quartz
- Adularia
- Albite
- Illite
- Illite-smectite (IS)
- Smectite
- Chlorite
- Calcite
- Pyrite
- Buddingtonite & NH$_4$-illite

Less common (rare):

- Corrensite
- Chlorite-smectite
- Siderite
- Epidote
- Kaolinite
- Alunite

Many require the use of analytical techniques to identify e.g. XRD, hyperspectral, petrography.
Focus on:

Alteration mapped at many deposits to varying levels of detail

Focus on alteration at:

- Karangahake
- Favona and Martha
- Golden Cross
- Waitekauri
- Wharekirauponga

(Torckler et al., 2016)
Karangahake alteration (XRD)

(A) Map of Mt Karangahake 544 m

Rhyolite
Quartz vein
Contour (20m interval)
Demagnetised zone
Radiometric K anomaly

0 1 km

(B) Map of Adularia

0 1 km

(C) Map of Albite

0 1 km

(D) Map of Illite

IS
Smectite

0 1 km

(E) Map of Chlorite

0 1 km

(F) Map of Calcite

0 1 km

NZ epithermal gold workshop 2018

(Stuart et al., 2006; Simpson et al., in review)

GNS Science
Favona (XRD)

- Widespread adularia
- Localised albite
- Zoned illite, IS

Favona vein parallels / transects illite / IS contact

(Simpson and Mauk, 2007)
Martha alteration (XRD)

(Castendyk et al., 2005)
Waitekauri (XRD)

2 km drill line sections

- Widespread adularia
- Albite below adularia (Scotia)
- Zoned illite, IS, smectite

(Simpson and Mauk, 2011)
Golden Cross (XRD)

- Widespread adularia
- Illite with IS carapace

(Simpson et al., 2001)
Hyperspectral (SWIR) reflectance spectroscopy

- Rapid, non-destructive field based mineral identification technique able to identify many alteration minerals (but no all)
 e.g. illite, IS, smectite, chlorite, calcite, NH₄-minerals, kaolinite, alunite

- Illite, IS, smectite distinguished based on H₂O/Al-OH ratio
 (ideally calibrated against XRD)

Waitekauri calculated H₂O/Al-OH depth ratio versus XRD clay mineral identification
There are differences **but** the same broad trends are identified from both techniques.
NH₄-minerals Favona (SWIR)

NH₄-minerals = buddingtonite (NH₄-feldspar) and NH₄-illite
NH₄-minerals

WKP (SWIR)

NH₄-minerals broadly coincidental with sheeted vein zones and in the hanging wall of wider quartz veins

But not all veins occur in rocks with NH₄-minerals
Alteration Minerals and Vein Proximity

(Data for drill hole UW462, Bodger (2015))
Alteration Mineral Quantification

Alteration mineral percentages

- XRD (SIROQUANT software or equivalent)
- Automated mineralogy
 (TESCAN Integrated Mineral Analyser / TIMA)

Mineral quantification reveals the abundance of some minerals change with proximity to veins

Adularia
Albite + calcite + illite
Albite + calcite + plagioclase
Adularia abundance increases towards the Maria, Mystery and Welcome/Crown veins.
Quantification Adularia: Karangahake

At Karangahake many rocks have adularia > quartz
Summary

Key alteration minerals zoned around veins are:

- Adularia and albite
- Illite, illite-smectite, smectite
- NH_4-minerals

Quartz veins occur in rocks altered to adularia, and/or illite. Some quartz veins in illite-smectite altered rocks (at / near illite boundary)

- Illite, IS, smectite define broad outline of the alteration system and the hotter core (100’s m to km’s lateral scale)
- Adularia outlines areas of high fluid flux (150 to +500 m lateral scale)
- NH_4-minerals, when present, occur proximal to veins (10’s to ~200 m)
- Adularia coextensive with illite
- Adularia can be coextensive with illite-smectite & locally smectite
- Albite at depth, coextensive with or boarding adularia
- NH_4-minerals proximal to veins
Analytical Exploration Tools

Hyperspectral (5 to 15 second scans)
 • Illite, illite-smectite, smectite, NH₄-minerals, plus others

Portable XRD (1 to 5 minute scans)
 • Mineral identification / Mineral quantification – require longer scans

Portable XRF (40 to 90 seconds scans)
 • K/Al ratio can be used as proxy for adularia (Hughes and Barker 2017)

At Karangahake rocks with a K/Al ratio ≥0.4 have adularia
Acknowledgements

This presentation incorporates many research projects that would not have been possible without the support of the various mining companies and funding by the New Zealand Government through the Ministry of Business, Innovation and Employment and its predecessors.

OceanaGold Ltd, Newmont Waihi Gold Ltd, New Talisman Gold Mines Ltd (formally Heritage Gold Ltd), and Coeur Gold New Zealand Ltd are thanked for access to their operations, drill core, financial support, as well as invaluable help from many staff; Lorraine Torckler, Rick Streiff, Ross McConnochie, Rohan Worland, Scott Randall, Thomas Gardner, Peter Keall, Jackie Hobbins, Murray Stevens, Wayne Chowles, Peter Atkinson, Anton Barbar, Paul Vandonvich, Al McOnie, Peter White and Paul Rutherford.

Studies at Golden Cross, Favona, Waitekauri, Karangahake and Wharekirauponga were made possible through funded research programmes led by Jeff Mauk, Stuart Simmons, and Tony Christie (Gold Exploration Models / GEM).

During the alteration journey there are many who have contributed along the way; Stuart Simmons, Patrick Browne, Jeff Mauk, Craig Panther, Bernard Spörl, Julie Rowland, Alistair Stuart, Matthew Harris, Mathijs Booden, Erin Hollinger, Helen Cocker, Ian Warren, Devin Castendyk, Ross Kendrick, Anne Morrell, Tony Christie, Robert Brathwaite, Debra Chappell, Michael Gazley, Mark Pearce, Renee Birchall, Shaun Barker, Rosie Hughes, and others. Thank you